nonconformist.nc.BaseModelNc¶
- 
class nonconformist.nc.BaseModelNc(model, err_func, normalizer=None, beta=0)¶
- Base class for nonconformity scorers based on an underlying model. - Parameters: - model : ClassifierAdapter or RegressorAdapter - Underlying classification model used for calculating nonconformity scores. - err_func : ClassificationErrFunc or RegressionErrFunc - Error function object. - 
__init__(model, err_func, normalizer=None, beta=0)¶
 - 
fit(x, y)¶
- Fits the underlying model of the nonconformity scorer. - Parameters: - x : numpy array of shape [n_samples, n_features] - Inputs of examples for fitting the underlying model. - y : numpy array of shape [n_samples] - Outputs of examples for fitting the underlying model. - Returns: - None 
 - 
get_params(deep=True)¶
- Get parameters for this estimator. - Parameters: - deep : boolean, optional - If True, will return the parameters for this estimator and contained subobjects that are estimators. - Returns: - params : mapping of string to any - Parameter names mapped to their values. 
 - 
score(x, y=None)¶
- Calculates the nonconformity score of a set of samples. - Parameters: - x : numpy array of shape [n_samples, n_features] - Inputs of examples for which to calculate a nonconformity score. - y : numpy array of shape [n_samples] - Outputs of examples for which to calculate a nonconformity score. - Returns: - nc : numpy array of shape [n_samples] - Nonconformity scores of samples. 
 - 
set_params(**params)¶
- Set the parameters of this estimator. - The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form - <component>__<parameter>so that it’s possible to update each component of a nested object.- Returns: - self 
 
- 
