nonconformist.nc
.RegressorNc¶
-
class
nonconformist.nc.
RegressorNc
(model, err_func=<nonconformist.nc.AbsErrorErrFunc object>, normalizer=None, beta=0)¶ Nonconformity scorer using an underlying regression model.
Parameters: model : RegressorAdapter
Underlying regression model used for calculating nonconformity scores.
err_func : RegressionErrFunc
Error function object.
See also
ProbEstClassifierNc
,NormalizedRegressorNc
Attributes
model (RegressorAdapter) Underlying model object. err_func (RegressionErrFunc) Scorer function used to calculate nonconformity scores. -
__init__
(model, err_func=<nonconformist.nc.AbsErrorErrFunc object>, normalizer=None, beta=0)¶
-
fit
(x, y)¶ Fits the underlying model of the nonconformity scorer.
Parameters: x : numpy array of shape [n_samples, n_features]
Inputs of examples for fitting the underlying model.
y : numpy array of shape [n_samples]
Outputs of examples for fitting the underlying model.
Returns: None
-
get_params
(deep=True)¶ Get parameters for this estimator.
Parameters: deep : boolean, optional
If True, will return the parameters for this estimator and contained subobjects that are estimators.
Returns: params : mapping of string to any
Parameter names mapped to their values.
-
predict
(x, nc, significance=None)¶ Constructs prediction intervals for a set of test examples.
Predicts the output of each test pattern using the underlying model, and applies the (partial) inverse nonconformity function to each prediction, resulting in a prediction interval for each test pattern.
Parameters: x : numpy array of shape [n_samples, n_features]
Inputs of patters for which to predict output values.
significance : float
Significance level (maximum allowed error rate) of predictions. Should be a float between 0 and 1. If
None
, then intervals for all significance levels (0.01, 0.02, …, 0.99) are output in a 3d-matrix.Returns: p : numpy array of shape [n_samples, 2] or [n_samples, 2, 99]
If significance is
None
, then p contains the interval (minimum and maximum boundaries) for each test pattern, and each significance level (0.01, 0.02, …, 0.99). If significance is a float between 0 and 1, then p contains the prediction intervals (minimum and maximum boundaries) for the set of test patterns at the chosen significance level.
-
score
(x, y=None)¶ Calculates the nonconformity score of a set of samples.
Parameters: x : numpy array of shape [n_samples, n_features]
Inputs of examples for which to calculate a nonconformity score.
y : numpy array of shape [n_samples]
Outputs of examples for which to calculate a nonconformity score.
Returns: nc : numpy array of shape [n_samples]
Nonconformity scores of samples.
-
set_params
(**params)¶ Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form
<component>__<parameter>
so that it’s possible to update each component of a nested object.Returns: self
-